• Hardware: ubuntu 20 x86 with RTX 3060
• Network Type: Classification tf1 (VehicleMakeNet - Resnet18)
• TLT Version: http://nvcr.io/nvidia/tao/tao-toolkit:5.0.0-tf1.15.5
• Training spec file:
retrain_car_make.txt (1.0 KB)
• How to reproduce the issue ?
I have a vehiclemakenet modified that classify 35 car brands. I have exported the model after trained in tao classification tf1:
# Generate .onnx file using tao container
!tao model classification_tf1 export \
-m $USER_EXPERIMENT_DIR/retrain_pruned/weights/resnet_010.hdf5 \
-o $USER_EXPERIMENT_DIR/export/final_model \
-e $SPECS_DIR/retrain_car_make.cfg \
--classmap_json $USER_EXPERIMENT_DIR/retrain_pruned/classmap.json \
--gen_ds_config
I use this Onnx file to inference the net in Deepstream, but I do not have any output from this net. (If I use the catalog pretrained model it works, but I need more output classes). When deepstream generate the engine, I obtain that:
INFO: [FullDims Engine Info]: layers num: 2
0 INPUT kFLOAT input_1 3x224x224 min: 1x3x224x224 opt: 2x3x224x224 Max: 2x3x224x224
1 OUTPUT kFLOAT predictions 35 min: 0 opt: 0 Max: 0
But when I run the pretrained model I obtain that:
INFO: [FullDims Engine Info]: layers num: 2
0 INPUT kFLOAT input_1 3x224x224
1 OUTPUT kFLOAT predictions/Softmax 35x1x1
So, I do not get the softmax output in my model engine. This is my model:
27 posts - 2 participants