Network: grounding_dino
Tag: nvcr.io/nvidia/tao/tao-toolkit:5.5.0-pyt
Config (could not upload the file):
dataset:
batch_size: 4
max_labels: 50
test_data_sources: null
train_data_sources:
image_dir: /root/workspace/german-plates-roboflow/train/
json_file: /root/workspace/german-plates-roboflow/annotations/odvg/train_only_license_cont_id_odvg.jsonl # odvg format
label_map: /root/workspace/german-plates-roboflow/annotations/odvg/train_only_license_cont_id_odvg_labelmap.json
val_data_sources:
image_dir: /root/workspace/german-plates-roboflow/val/
json_file: /root/workspace/german-plates-roboflow/annotations/contiguous_ids/val_only_license_cont_id.json # category ids need to be contiguous
workers: 4
model:
dec_layers: 6
dropout_ratio: 0
enc_layers: 6
num_feature_levels: 4
num_queries: 900
num_select: 300
pretrained_backbone_path: null
use_dn: true
results_dir: /root/workspace/experiments/exp_0/
train:
activation_checkpoint: true
distributed_strategy: ddp
# is_dry_run: true
num_epochs: 10
num_gpus: 1
num_nodes: 1
optim:
lr: 0.0002
lr_backbone: 2.0e-05
lr_steps:
- 10
precision: fp32
validation_interval: 1
val_interval: 1
# verbose: true
Running the training from this container directly, no apt updates, pulled unmodified.
(Hydra) gives the following error:
UserWarning:
'jupyter_cfg.yaml' is validated against ConfigStore schema with the same name.
This behavior is deprecated in Hydra 1.1 and will be removed in Hydra 1.2.
See https://hydra.cc/docs/next/upgrades/1.0_to_1.1/automatic_schema_matching for migration instructions.
_run_hydra(
Error merging 'jupyter_cfg.yaml' with schema
Cannot merge DictConfig with ListConfig
full_key:
object_type=ExperimentConfig
1 post - 1 participant