Quantcast
Channel: TAO Toolkit - NVIDIA Developer Forums
Viewing all articles
Browse latest Browse all 497

Training accuracy issue with GroundingDINO

$
0
0

Please provide the following information when requesting support.

• Hardware L40s
• Network Type Grounding DINO
• TLT Version TAO 5.5
• Training spec file

train:
  num_gpus: 8
  num_nodes: 1
  validation_interval: 1
  optim:
    lr_backbone: 2e-05
    lr: 0.0002
    lr_steps: [30,80]
    momentum: 0.9
    lr_linear_proj_mult: 0.1
  num_epochs: 100
  freeze: ["backbone.0", "bert"]  # if only finetuning
  precision: bf16
  pretrained_model_path: /code/TAO/grounding_dino_vgrounding_dino_swin_tiny_commercial_trainable_v1.0/grounding_dino_swin_tiny_commercial_trainable.pth
dataset:
  train_data_sources:
    - image_dir: //grounding_object_dataset/data/pinyin/train
      json_file: //grounding_object_dataset/tao_format/pinyin/train_odvg.jsonl
      label_map: //grounding_object_dataset/tao_format/pinyin/train_odvg_labelmap.json
  val_data_sources:
    image_dir: //grounding_object_dataset/data/pinyin/val
    json_file: //grounding_object_dataset/tao_format/pinyin/val_remapped.json
  max_labels: 120
  batch_size: 8
  workers: 8
  dataset_type: serialized  # To reduce the system memory usage
  augmentation:
    scales:
    - 480
    - 512
    - 544
    - 576
    - 608
    - 640
    - 672
    - 704
    - 736
    - 768
    - 800
    input_mean:
    - 0.485
    - 0.456
    - 0.406
    input_std:
    - 0.229
    - 0.224
    - 0.225
    train_random_resize:
    - 480
    - 512
    - 544
    - 576
    - 608
    - 640
    - 672
    - 704
    - 736
    - 768
    - 800
    - 1024
    horizontal_flip_prob: 0.0
    train_random_crop_min: 384
    train_random_crop_max: 600
    random_resize_max_size: 1024
    test_random_resize: 1024
    fixed_padding: true
    fixed_random_crop: null
model:
  backbone: swin_tiny_224_1k
  num_feature_levels: 4
  dec_layers: 6
  enc_layers: 6
  num_queries: 1500
  dropout_ratio: 0.0
  dim_feedforward: 2048
  log_scale: auto
  class_embed_bias: True
  num_select: 1500
  dn_number: 0


• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)

While training on my own dataset, I found that the training accuracy could not reach the normal level (I can achieve a map50 of 96 when using other GroundingDINO training frameworks).

However, when using TAO and training for 70 epochs, the map50 only reached 87. My dataset has three categories, and the data volume is 20,000.

Is this performance normal? Could it be that some parameters are not set correctly?
Thanks

5 posts - 2 participants

Read full topic


Viewing all articles
Browse latest Browse all 497

Trending Articles