I am using the classification_tf2 tao_voc with this config:
results_dir: '/workspace/tao-experiments/classification_tf2/output'
dataset:
train_dataset_path: "/workspace/tao-experiments/data/train"
val_dataset_path: "/workspace/tao-experiments/data/val"
preprocess_mode: 'torch'
num_classes: 2
augmentation:
enable_color_augmentation: True
enable_center_crop: True
train:
#class_weights: [1.0, 2.0] # Moderate bias toward class_2
qat: False
checkpoint: ''
batch_size_per_gpu: 32
num_epochs: 100
optim_config:
optimizer: 'sgd'
lr_config:
scheduler: 'cosine'
learning_rate: 0.05
soft_start: 0.05
reg_config:
type: 'L2'
scope: ['conv2d', 'dense']
weight_decay: 0.00005
model:
backbone: 'efficientnet-b0'
input_width: 256
input_height: 256
input_channels: 3
input_image_depth: 8
evaluate:
dataset_path: "/workspace/tao-experiments/data/test"
checkpoint: "/workspace/tao-experiments/classification_tf2/output/train/efficientnet-b0_100.tlt"
top_k: 3
batch_size: 256
n_workers: 8
prune:
checkpoint: '/workspace/tao-experiments/classification_tf2/output/train/efficientnet-b0_100.tlt'
threshold: 0.68
byom_model_path: ''
How do I add weight_bias here?
4 posts - 2 participants