Quantcast
Channel: TAO Toolkit - NVIDIA Developer Forums
Viewing all articles
Browse latest Browse all 497

TAO Toolkit Converter

$
0
0

Please provide the following information when requesting support.

• Hardware (T4/V100/Xavier/Nano/etc): Nvidia 3090
• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc): Detectnet_v2
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here):
Configuration of the TAO Toolkit Instance

task_group:
     model:
        dockers:
            nvidia/tao/tao-toolkit:
                5.0.0-tf2.11.0:
                    docker_registry: nvcr.io
                    tasks:
                        1. classification_tf2
                        2. efficientdet_tf2
                5.0.0-tf1.15.5:
                    docker_registry: nvcr.io
                    tasks:
                        1. bpnet
                        2. classification_tf1
                        3. converter
                        4. detectnet_v2
                        5. dssd
                        6. efficientdet_tf1
                        7. faster_rcnn
                        8. fpenet
                        9. lprnet
                        10. mask_rcnn
                        11. multitask_classification
                        12. retinanet
                        13. ssd
                        14. unet
                        15. yolo_v3
                        16. yolo_v4
                        17. yolo_v4_tiny
                5.2.0-pyt2.1.0:
                    docker_registry: nvcr.io
                    tasks:
                        1. action_recognition
                        2. centerpose
                        3. deformable_detr
                        4. dino
                        5. mal
                        6. ml_recog
                        7. ocdnet
                        8. ocrnet
                        9. optical_inspection
                        10. pointpillars
                        11. pose_classification
                        12. re_identification
                        13. visual_changenet
                5.2.0-pyt1.14.0:
                    docker_registry: nvcr.io
                    tasks:
                        1. classification_pyt
                        2. segformer
    dataset:
        dockers:
            nvidia/tao/tao-toolkit:
                5.2.0-data-services:
                    docker_registry: nvcr.io
                    tasks:
                        1. augmentation
                        2. auto_label
                        3. annotations
                        4. analytics
    deploy:
        dockers:
            nvidia/tao/tao-toolkit:
                5.2.0-deploy:
                    docker_registry: nvcr.io
                    tasks:
                        1. visual_changenet
                        2. centerpose
                        3. classification_pyt
                        4. classification_tf1
                        5. classification_tf2
                        6. deformable_detr
                        7. detectnet_v2
                        8. dino
                        9. dssd
                        10. efficientdet_tf1
                        11. efficientdet_tf2
                        12. faster_rcnn
                        13. lprnet
                        14. mask_rcnn
                        15. ml_recog
                        16. multitask_classification
                        17. ocdnet
                        18. ocrnet
                        19. optical_inspection
                        20. retinanet
                        21. segformer
                        22. ssd
                        23. trtexec
                        24. unet
                        25. yolo_v3
                        26. yolo_v4
                        27. yolo_v4_tiny
format_version: 3.0
toolkit_version: 5.2.0
published_date: 12/06/2023

• Training spec file(If have, please share here)
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.):
I am experiencing this issue for every model that uses converter so cannot specify it.

If I am right, since tlt 5.0.0, tlt/etlt are deprecated and the toolkit makes models with hdf5 also exports models to onnx format.

But tao-converter requires encrypted model such as etlt format I guess since I am getting this error “[ERROR] Failed to parse the model, please check the encoding key to make sure it’s correct”.

I have tried to use explicit key and trained model several times just in case I used wrong key and none of them worked. While when I used pruned etlt format model from ngc example, everything worked fine. So format is the only issue in my opinion.

Am I experiencing it because I am using too old examples? Should I use trtexec to convert my onnx model instead of using tao-converter?

10 posts - 2 participants

Read full topic


Viewing all articles
Browse latest Browse all 497

Trending Articles