Quantcast
Channel: TAO Toolkit - NVIDIA Developer Forums
Viewing all articles
Browse latest Browse all 537

Classification Pyt training error :: Expected to have finished reduction in the prior iteration before starting a new one

$
0
0

I am trying to train a vehicle classification model with TAO Classification pytorch.

• Hardware ( RTX 2060)
• Network Type (Classification pyt)
• TLT Version ( nvidia/tao/tao-toolkit: 5.5.0-pyt: )
• Training spec file:

train:
  exp_config:
    manual_seed: 42
  train_config:
    optimizer:
      type: AdamW
      lr: 0.001              # Base learning rate
      weight_decay: 0.01
    lr_config:
      type: "CosineAnnealingLR"
      T_max: 50              # Cosine schedule period (in epochs)
      eta_min: 1e-5
      by_epoch: True
    runner:
      max_epochs: 50         # Train for 50 epochs
    checkpoint_config:
      interval: 1            # Save a checkpoint every epoch
    logging:
      interval: 100          # Log metrics every 100 iterations
    validate: True
    evaluation:
      interval: 2            # Evaluate on the validation set every 2 epochs
    custom_hooks:
      - type: "EMAHook"
        momentum: 4e-5
        priority: "ABOVE_NORMAL"
    #find_unused_parameters: True

dataset:
  data:
    samples_per_gpu: 8       # Batch size per GPU (suitable for RTX 4060 8GB)
    train:
      data_prefix: "/data/train/"
      pipeline:
        - type: RandomResizedCrop
          scale: 224
          backend: pillow
        - type: RandomFlip
          prob: 0.5
          direction: "horizontal"
        - type: ColorJitter
          brightness: 0.4
          contrast: 0.4
          saturation: 0.4
          hue: 0.1
        - type: RandomErasing
          erase_prob: 0.3
      classes: "/data/label_cda.txt"
    val:
      data_prefix: "/data/val/"
      classes: "/data/label_cda.txt"
    test:
      data_prefix: "/data/val/"
      classes: "/data/label_cda.txt"

model:
  backbone:
    type: "faster_vit_4_21k_224"
    custom_args:
      drop_path: 0.1        # Stochastic depth for regularization
  head:
    type: "TAOLinearClsHead"
    custom_args:
      head_init_scale: 1.0
    num_classes: 11         # Number of classes
    loss:
      type: "CrossEntropyLoss"
      loss_weight: 1.0
      class_weight: [0.605, 0.726, 62.6, 2.31, 1.23, 2.15, 0.403, 1.29, 0.935, 1.184, 0.927]  # Class weights
      use_soft: False
    

I have class imbalance thus I have introduced class_weight parameters in the loss function.

When running the training with the command:

!tao model classification_pyt train \
                  -e $SPECS_DIR/train_CDA.yaml \
                  results_dir=$RESULTS_DIR/classification_experiment \
                  train.num_gpus=$NUM_GPUS \
                  model.init_cfg.checkpoint=/workspace/tao-experiments/pretrained/fastervit_4_21k_224_w14.pth

I see error:

env: EPOCHS=50
Train Classification Model
2025-03-06 23:49:41,054 [TAO Toolkit] [INFO] root 160: Registry: ['nvcr.io']
2025-03-06 23:49:41,105 [TAO Toolkit] [INFO] nvidia_tao_cli.components.instance_handler.local_instance 361: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:5.5.0-pyt
2025-03-06 23:49:41,124 [TAO Toolkit] [WARNING] nvidia_tao_cli.components.docker_handler.docker_handler 293: 
Docker will run the commands as root. If you would like to retain your
local host permissions, please add the "user":"UID:GID" in the
DockerOptions portion of the "/home/sigmind/.tao_mounts.json" file. You can obtain your
users UID and GID by using the "id -u" and "id -g" commands on the
terminal.
2025-03-06 23:49:41,124 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 301: Printing tty value True
[2025-03-06 17:49:45,137 - TAO Toolkit - matplotlib.font_manager - INFO] generated new fontManager
Train results will be saved at: /results/classification_experiment/train
03/06 17:49:52 - mmengine - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
Python: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]    CUDA available: True
    MUSA available: False
    numpy_random_seed: 42
    GPU 0: NVIDIA GeForce RTX 2060
    CUDA_HOME: /usr/local/cuda
    NVCC: Cuda compilation tools, release 12.4, V12.4.131
    GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
    PyTorch: 2.3.0a0+6ddf5cf85e.nv24.04
    PyTorch compiling details: PyTorch built with:
  - GCC 11.2
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2021.1-Product Build 20201104 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.3.2 (Git Hash N/A)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 12.4
  - NVCC architecture flags: -gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_72,code=sm_72;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_87,code=sm_87;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_90,code=compute_90
  - CuDNN 90.1
  - Magma 2.6.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/gcc-toolset-11/root/usr/bin/c++, CXX_FLAGS=-fno-gnu-unique -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=ON, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 

    TorchVision: 0.18.0a0
    OpenCV: 4.7.0
    MMEngine: 0.10.4

Runtime environment:
    cudnn_benchmark: False
    mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
    dist_cfg: {'backend': 'nccl'}
    seed: 42
    deterministic: False
    Distributed launcher: pytorch
    Distributed training: True
    GPU number: 1
------------------------------------------------------------

03/06 17:49:52 - mmengine - INFO - Config:
auto_scale_lr = dict(base_batch_size=1024)
custom_hooks = [
    dict(momentum=4e-05, priority='ABOVE_NORMAL', type='EMAHook'),
]
data_preprocessor = dict(
    mean=[
        123.675,
        116.28,
        103.53,
    ],
    num_classes=11,
    std=[
        58.395,
        57.12,
        57.375,
    ],
    to_rgb=True)
dataset_type = 'ImageNet'
default_hooks = dict(
    checkpoint=dict(interval=1, type='CheckpointHook'),
    logger=dict(interval=100, type='TaoTextLoggerHook'),
    param_scheduler=dict(type='ParamSchedulerHook'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    timer=dict(type='IterTimerHook'),
    visualization=dict(enable=False, type='VisualizationHook'))
default_scope = 'mmpretrain'
env_cfg = dict(
    cudnn_benchmark=False,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
find_unused_parameters = False
launcher = 'pytorch'
load_from = None
log_level = 'INFO'
model = dict(
    backbone=dict(
        drop_path=0.1,
        freeze=False,
        init_cfg=dict(
            checkpoint=
            '/workspace/tao-experiments/pretrained/fastervit_4_21k_224_w14.pth',
            prefix=None,
            type='Pretrained'),
        pretrained=None,
        type='faster_vit_4_21k_224'),
    head=dict(
        binary=False,
        head_init_scale=1.0,
        in_channels=1568,
        loss=dict(
            class_weight=[
                0.605,
                0.726,
                62.6,
                2.31,
                1.23,
                2.15,
                0.403,
                1.29,
                0.935,
                1.184,
                0.927,
            ],
            loss_weight=1.0,
            type='CrossEntropyLoss',
            use_soft=False),
        num_classes=11,
        type='TAOLinearClsHead'),
    neck=None,
    train_cfg=dict(augments=None),
    type='ImageClassifier')
optim_wrapper = dict(
    optimizer=dict(lr=0.001, type='AdamW', weight_decay=0.01),
    paramwise_cfg=None)
param_scheduler = [
    dict(T_max=50, by_epoch=True, eta_min=1e-05, type='CosineAnnealingLR'),
]
randomness = dict(deterministic=False, seed=42)
resume = False
test_cfg = dict()
test_dataloader = dict(
    batch_size=8,
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        ann_file=None,
        classes='/data/label_cda.txt',
        data_prefix='/data/val/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(scale=224, type='Resize'),
            dict(crop_size=224, type='CenterCrop'),
            dict(type='PackInputs'),
        ],
        type='ImageNet'),
    num_workers=2,
    pin_memory=True,
    sampler=dict(shuffle=True, type='DefaultSampler'))
test_evaluator = dict(topk=(1, ), type='Accuracy')
train_cfg = dict(by_epoch=True, max_epochs=50, val_interval=2)
train_dataloader = dict(
    batch_size=8,
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        classes='/data/label_cda.txt',
        data_prefix='/data/train/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(backend='pillow', scale=224, type='RandomResizedCrop'),
            dict(direction='horizontal', prob=0.5, type='RandomFlip'),
            dict(
                brightness=0.4,
                contrast=0.4,
                hue=0.1,
                saturation=0.4,
                type='ColorJitter'),
            dict(erase_prob=0.3, type='RandomErasing'),
            dict(type='PackInputs'),
        ],
        type='ImageNet'),
    num_workers=2,
    pin_memory=True,
    sampler=dict(shuffle=True, type='DefaultSampler'))
val_cfg = dict()
val_dataloader = dict(
    batch_size=8,
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        ann_file=None,
        classes='/data/label_cda.txt',
        data_prefix='/data/val/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(scale=224, type='Resize'),
            dict(crop_size=224, type='CenterCrop'),
            dict(type='PackInputs'),
        ],
        type='ImageNet'),
    num_workers=2,
    pin_memory=True,
    sampler=dict(shuffle=True, type='DefaultSampler'))
val_evaluator = dict(topk=(1, ), type='Accuracy')
vis_backends = [
    dict(type='LocalVisBackend'),
]
visualizer = dict(
    type='UniversalVisualizer', vis_backends=[
        dict(type='LocalVisBackend'),
    ])
work_dir = '/results/classification_experiment/train'

03/06 17:49:52 - mmengine - INFO - Because batch augmentations are enabled, the data preprocessor automatically enables the `to_onehot` option to generate one-hot format labels.
03/06 17:49:56 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) RuntimeInfoHook                    
(ABOVE_NORMAL) EMAHook                            
(BELOW_NORMAL) TaoTextLoggerHook                  
 -------------------- 
after_load_checkpoint:
(ABOVE_NORMAL) EMAHook                            
 -------------------- 
before_train:
(VERY_HIGH   ) RuntimeInfoHook                    
(ABOVE_NORMAL) EMAHook                            
(NORMAL      ) IterTimerHook                      
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(NORMAL      ) DistSamplerSeedHook                
 -------------------- 
before_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(ABOVE_NORMAL) EMAHook                            
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) TaoTextLoggerHook                  
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
after_train_epoch:
(NORMAL      ) IterTimerHook                      
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_val:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
before_val_epoch:
(ABOVE_NORMAL) EMAHook                            
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_val_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_val_iter:
(NORMAL      ) IterTimerHook                      
(NORMAL      ) VisualizationHook                  
(BELOW_NORMAL) TaoTextLoggerHook                  
 -------------------- 
after_val_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(ABOVE_NORMAL) EMAHook                            
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) TaoTextLoggerHook                  
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
after_val:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
before_save_checkpoint:
(ABOVE_NORMAL) EMAHook                            
 -------------------- 
after_train:
(VERY_HIGH   ) RuntimeInfoHook                    
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_test:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
before_test_epoch:
(ABOVE_NORMAL) EMAHook                            
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_test_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_test_iter:
(NORMAL      ) IterTimerHook                      
(NORMAL      ) VisualizationHook                  
(BELOW_NORMAL) TaoTextLoggerHook                  
 -------------------- 
after_test_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(ABOVE_NORMAL) EMAHook                            
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) TaoTextLoggerHook                  
 -------------------- 
after_test:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
after_run:
(BELOW_NORMAL) TaoTextLoggerHook                  
 -------------------- 
03/06 17:49:59 - mmengine - INFO - load model from: /workspace/tao-experiments/pretrained/fastervit_4_21k_224_w14.pth
03/06 17:49:59 - mmengine - INFO - Loads checkpoint by local backend from path: /workspace/tao-experiments/pretrained/fastervit_4_21k_224_w14.pth
03/06 17:49:59 - mmengine - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: backbone.patch_embed.conv_down.0.weight, backbone.patch_embed.conv_down.1.weight, backbone.patch_embed.conv_down.1.bias, backbone.patch_embed.conv_down.1.running_mean, backbone.patch_embed.conv_down.1.running_var, backbone.patch_embed.conv_down.1.num_batches_tracked, backbone.patch_embed.conv_down.3.weight, backbone.patch_embed.conv_down.4.weight, backbone.patch_embed.conv_down.4.bias, backbone.patch_embed.conv_down.4.running_mean, backbone.patch_embed.conv_down.4.running_var, backbone.patch_embed.conv_down.4.num_batches_tracked, backbone.levels.0.blocks.0.conv1.weight, backbone.levels.0.blocks.0.conv1.bias, backbone.levels.0.blocks.0.norm1.weight, backbone.levels.0.blocks.0.norm1.bias, backbone.levels.0.blocks.0.norm1.running_mean, backbone.levels.0.blocks.0.norm1.running_var, backbone.levels.0.blocks.0.norm1.num_batches_tracked, backbone.levels.0.blocks.0.conv2.weight, backbone.levels.0.blocks.0.conv2.bias, backbone.levels.0.blocks.0.norm2.weight, backbone.levels.0.blocks.0.norm2.bias, backbone.levels.0.blocks.0.norm2.running_mean, backbone.levels.0.blocks.0.norm2.running_var, backbone.levels.0.blocks.0.norm2.num_batches_tracked, backbone.levels.0.blocks.1.conv1.weight, backbone.levels.0.blocks.1.conv1.bias, backbone.levels.0.blocks.1.norm1.weight, backbone.levels.0.blocks.1.norm1.bias, backbone.levels.0.blocks.1.norm1.running_mean, backbone.levels.0.blocks.1.norm1.running_var, backbone.levels.0.blocks.1.norm1.num_batches_tracked, backbone.levels.0.blocks.1.conv2.weight, backbone.levels.0.blocks.1.conv2.bias, backbone.levels.0.blocks.1.norm2.weight, backbone.levels.0.blocks.1.norm2.bias, backbone.levels.0.blocks.1.norm2.running_mean, backbone.levels.0.blocks.1.norm2.running_var, backbone.levels.0.blocks.1.norm2.num_batches_tracked, backbone.levels.0.blocks.2.conv1.weight, backbone.levels.0.blocks.2.conv1.bias, backbone.levels.0.blocks.2.norm1.weight, backbone.levels.0.blocks.2.norm1.bias, backbone.levels.0.blocks.2.norm1.running_mean, backbone.levels.0.blocks.2.norm1.running_var, backbone.levels.0.blocks.2.norm1.num_batches_tracked, backbone.levels.0.blocks.2.conv2.weight, backbone.levels.0.blocks.2.conv2.bias, backbone.levels.0.blocks.2.norm2.weight, backbone.levels.0.blocks.2.norm2.bias, backbone.levels.0.blocks.2.norm2.running_mean, backbone.levels.0.blocks.2.norm2.running_var, backbone.levels.0.blocks.2.norm2.num_batches_tracked, backbone.levels.0.downsample.norm.weight, backbone.levels.0.downsample.norm.bias, backbone.levels.0.downsample.reduction.0.weight, backbone.levels.1.blocks.0.conv1.weight, backbone.levels.1.blocks.0.conv1.bias, backbone.levels.1.blocks.0.norm1.weight, backbone.levels.1.blocks.0.norm1.bias, backbone.levels.1.blocks.0.norm1.running_mean, backbone.levels.1.blocks.0.norm1.running_var, backbone.levels.1.blocks.0.norm1.num_batches_tracked, backbone.levels.1.blocks.0.conv2.weight, backbone.levels.1.blocks.0.conv2.bias, backbone.levels.1.blocks.0.norm2.weight, backbone.levels.1.blocks.0.norm2.bias, backbone.levels.1.blocks.0.norm2.running_mean, backbone.levels.1.blocks.0.norm2.running_var, backbone.levels.1.blocks.0.norm2.num_batches_tracked, backbone.levels.1.blocks.1.conv1.weight, backbone.levels.1.blocks.1.conv1.bias, backbone.levels.1.blocks.1.norm1.weight, backbone.levels.1.blocks.1.norm1.bias, backbone.levels.1.blocks.1.norm1.running_mean, backbone.levels.1.blocks.1.norm1.running_var, backbone.levels.1.blocks.1.norm1.num_batches_tracked, backbone.levels.1.blocks.1.conv2.weight, backbone.levels.1.blocks.1.conv2.bias, backbone.levels.1.blocks.1.norm2.weight, backbone.levels.1.blocks.1.norm2.bias, backbone.levels.1.blocks.1.norm2.running_mean, backbone.levels.1.blocks.1.norm2.running_var, backbone.levels.1.blocks.1.norm2.num_batches_tracked, backbone.levels.1.blocks.2.conv1.weight, backbone.levels.1.blocks.2.conv1.bias, backbone.levels.1.blocks.2.norm1.weight, backbone.levels.1.blocks.2.norm1.bias, backbone.levels.1.blocks.2.norm1.running_mean, backbone.levels.1.blocks.2.norm1.running_var, backbone.levels.1.blocks.2.norm1.num_batches_tracked, backbone.levels.1.blocks.2.conv2.weight, backbone.levels.1.blocks.2.conv2.bias, backbone.levels.1.blocks.2.norm2.weight, backbone.levels.1.blocks.2.norm2.bias, backbone.levels.1.blocks.2.norm2.running_mean, backbone.levels.1.blocks.2.norm2.running_var, backbone.levels.1.blocks.2.norm2.num_batches_tracked, backbone.levels.1.downsample.norm.weight, backbone.levels.1.downsample.norm.bias, backbone.levels.1.downsample.reduction.0.weight, backbone.levels.2.blocks.0.gamma3, backbone.levels.2.blocks.0.gamma4, backbone.levels.2.blocks.0.pos_embed.relative_bias, backbone.levels.2.blocks.0.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.0.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.0.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.0.norm1.weight, backbone.levels.2.blocks.0.norm1.bias, backbone.levels.2.blocks.0.attn.qkv.weight, backbone.levels.2.blocks.0.attn.qkv.bias, backbone.levels.2.blocks.0.attn.proj.weight, backbone.levels.2.blocks.0.attn.proj.bias, backbone.levels.2.blocks.0.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.0.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.0.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.0.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.0.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.0.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.0.norm2.weight, backbone.levels.2.blocks.0.norm2.bias, backbone.levels.2.blocks.0.mlp.fc1.weight, backbone.levels.2.blocks.0.mlp.fc1.bias, backbone.levels.2.blocks.0.mlp.fc2.weight, backbone.levels.2.blocks.0.mlp.fc2.bias, backbone.levels.2.blocks.1.gamma3, backbone.levels.2.blocks.1.gamma4, backbone.levels.2.blocks.1.pos_embed.relative_bias, backbone.levels.2.blocks.1.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.1.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.1.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.1.norm1.weight, backbone.levels.2.blocks.1.norm1.bias, backbone.levels.2.blocks.1.attn.qkv.weight, backbone.levels.2.blocks.1.attn.qkv.bias, backbone.levels.2.blocks.1.attn.proj.weight, backbone.levels.2.blocks.1.attn.proj.bias, backbone.levels.2.blocks.1.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.1.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.1.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.1.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.1.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.1.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.1.norm2.weight, backbone.levels.2.blocks.1.norm2.bias, backbone.levels.2.blocks.1.mlp.fc1.weight, backbone.levels.2.blocks.1.mlp.fc1.bias, backbone.levels.2.blocks.1.mlp.fc2.weight, backbone.levels.2.blocks.1.mlp.fc2.bias, backbone.levels.2.blocks.2.gamma3, backbone.levels.2.blocks.2.gamma4, backbone.levels.2.blocks.2.pos_embed.relative_bias, backbone.levels.2.blocks.2.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.2.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.2.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.2.norm1.weight, backbone.levels.2.blocks.2.norm1.bias, backbone.levels.2.blocks.2.attn.qkv.weight, backbone.levels.2.blocks.2.attn.qkv.bias, backbone.levels.2.blocks.2.attn.proj.weight, backbone.levels.2.blocks.2.attn.proj.bias, backbone.levels.2.blocks.2.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.2.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.2.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.2.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.2.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.2.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.2.norm2.weight, backbone.levels.2.blocks.2.norm2.bias, backbone.levels.2.blocks.2.mlp.fc1.weight, backbone.levels.2.blocks.2.mlp.fc1.bias, backbone.levels.2.blocks.2.mlp.fc2.weight, backbone.levels.2.blocks.2.mlp.fc2.bias, backbone.levels.2.blocks.3.gamma3, backbone.levels.2.blocks.3.gamma4, backbone.levels.2.blocks.3.pos_embed.relative_bias, backbone.levels.2.blocks.3.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.3.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.3.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.3.norm1.weight, backbone.levels.2.blocks.3.norm1.bias, backbone.levels.2.blocks.3.attn.qkv.weight, backbone.levels.2.blocks.3.attn.qkv.bias, backbone.levels.2.blocks.3.attn.proj.weight, backbone.levels.2.blocks.3.attn.proj.bias, backbone.levels.2.blocks.3.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.3.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.3.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.3.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.3.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.3.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.3.norm2.weight, backbone.levels.2.blocks.3.norm2.bias, backbone.levels.2.blocks.3.mlp.fc1.weight, backbone.levels.2.blocks.3.mlp.fc1.bias, backbone.levels.2.blocks.3.mlp.fc2.weight, backbone.levels.2.blocks.3.mlp.fc2.bias, backbone.levels.2.blocks.4.gamma3, backbone.levels.2.blocks.4.gamma4, backbone.levels.2.blocks.4.pos_embed.relative_bias, backbone.levels.2.blocks.4.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.4.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.4.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.4.norm1.weight, backbone.levels.2.blocks.4.norm1.bias, backbone.levels.2.blocks.4.attn.qkv.weight, backbone.levels.2.blocks.4.attn.qkv.bias, backbone.levels.2.blocks.4.attn.proj.weight, backbone.levels.2.blocks.4.attn.proj.bias, backbone.levels.2.blocks.4.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.4.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.4.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.4.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.4.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.4.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.4.norm2.weight, backbone.levels.2.blocks.4.norm2.bias, backbone.levels.2.blocks.4.mlp.fc1.weight, backbone.levels.2.blocks.4.mlp.fc1.bias, backbone.levels.2.blocks.4.mlp.fc2.weight, backbone.levels.2.blocks.4.mlp.fc2.bias, backbone.levels.2.blocks.5.gamma3, backbone.levels.2.blocks.5.gamma4, backbone.levels.2.blocks.5.pos_embed.relative_bias, backbone.levels.2.blocks.5.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.5.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.5.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.5.norm1.weight, backbone.levels.2.blocks.5.norm1.bias, backbone.levels.2.blocks.5.attn.qkv.weight, backbone.levels.2.blocks.5.attn.qkv.bias, backbone.levels.2.blocks.5.attn.proj.weight, backbone.levels.2.blocks.5.attn.proj.bias, backbone.levels.2.blocks.5.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.5.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.5.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.5.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.5.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.5.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.5.norm2.weight, backbone.levels.2.blocks.5.norm2.bias, backbone.levels.2.blocks.5.mlp.fc1.weight, backbone.levels.2.blocks.5.mlp.fc1.bias, backbone.levels.2.blocks.5.mlp.fc2.weight, backbone.levels.2.blocks.5.mlp.fc2.bias, backbone.levels.2.blocks.6.gamma3, backbone.levels.2.blocks.6.gamma4, backbone.levels.2.blocks.6.pos_embed.relative_bias, backbone.levels.2.blocks.6.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.6.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.6.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.6.norm1.weight, backbone.levels.2.blocks.6.norm1.bias, backbone.levels.2.blocks.6.attn.qkv.weight, backbone.levels.2.blocks.6.attn.qkv.bias, backbone.levels.2.blocks.6.attn.proj.weight, backbone.levels.2.blocks.6.attn.proj.bias, backbone.levels.2.blocks.6.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.6.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.6.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.6.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.6.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.6.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.6.norm2.weight, backbone.levels.2.blocks.6.norm2.bias, backbone.levels.2.blocks.6.mlp.fc1.weight, backbone.levels.2.blocks.6.mlp.fc1.bias, backbone.levels.2.blocks.6.mlp.fc2.weight, backbone.levels.2.blocks.6.mlp.fc2.bias, backbone.levels.2.blocks.7.gamma3, backbone.levels.2.blocks.7.gamma4, backbone.levels.2.blocks.7.pos_embed.relative_bias, backbone.levels.2.blocks.7.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.7.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.7.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.7.norm1.weight, backbone.levels.2.blocks.7.norm1.bias, backbone.levels.2.blocks.7.attn.qkv.weight, backbone.levels.2.blocks.7.attn.qkv.bias, backbone.levels.2.blocks.7.attn.proj.weight, backbone.levels.2.blocks.7.attn.proj.bias, backbone.levels.2.blocks.7.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.7.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.7.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.7.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.7.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.7.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.7.norm2.weight, backbone.levels.2.blocks.7.norm2.bias, backbone.levels.2.blocks.7.mlp.fc1.weight, backbone.levels.2.blocks.7.mlp.fc1.bias, backbone.levels.2.blocks.7.mlp.fc2.weight, backbone.levels.2.blocks.7.mlp.fc2.bias, backbone.levels.2.blocks.8.gamma3, backbone.levels.2.blocks.8.gamma4, backbone.levels.2.blocks.8.pos_embed.relative_bias, backbone.levels.2.blocks.8.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.8.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.8.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.8.norm1.weight, backbone.levels.2.blocks.8.norm1.bias, backbone.levels.2.blocks.8.attn.qkv.weight, backbone.levels.2.blocks.8.attn.qkv.bias, backbone.levels.2.blocks.8.attn.proj.weight, backbone.levels.2.blocks.8.attn.proj.bias, backbone.levels.2.blocks.8.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.8.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.8.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.8.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.8.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.8.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.8.norm2.weight, backbone.levels.2.blocks.8.norm2.bias, backbone.levels.2.blocks.8.mlp.fc1.weight, backbone.levels.2.blocks.8.mlp.fc1.bias, backbone.levels.2.blocks.8.mlp.fc2.weight, backbone.levels.2.blocks.8.mlp.fc2.bias, backbone.levels.2.blocks.9.gamma3, backbone.levels.2.blocks.9.gamma4, backbone.levels.2.blocks.9.pos_embed.relative_bias, backbone.levels.2.blocks.9.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.9.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.9.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.9.norm1.weight, backbone.levels.2.blocks.9.norm1.bias, backbone.levels.2.blocks.9.attn.qkv.weight, backbone.levels.2.blocks.9.attn.qkv.bias, backbone.levels.2.blocks.9.attn.proj.weight, backbone.levels.2.blocks.9.attn.proj.bias, backbone.levels.2.blocks.9.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.9.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.9.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.9.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.9.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.9.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.9.norm2.weight, backbone.levels.2.blocks.9.norm2.bias, backbone.levels.2.blocks.9.mlp.fc1.weight, backbone.levels.2.blocks.9.mlp.fc1.bias, backbone.levels.2.blocks.9.mlp.fc2.weight, backbone.levels.2.blocks.9.mlp.fc2.bias, backbone.levels.2.blocks.10.gamma3, backbone.levels.2.blocks.10.gamma4, backbone.levels.2.blocks.10.pos_embed.relative_bias, backbone.levels.2.blocks.10.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.10.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.10.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.10.norm1.weight, backbone.levels.2.blocks.10.norm1.bias, backbone.levels.2.blocks.10.attn.qkv.weight, backbone.levels.2.blocks.10.attn.qkv.bias, backbone.levels.2.blocks.10.attn.proj.weight, backbone.levels.2.blocks.10.attn.proj.bias, backbone.levels.2.blocks.10.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.10.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.10.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.10.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.10.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.10.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.10.norm2.weight, backbone.levels.2.blocks.10.norm2.bias, backbone.levels.2.blocks.10.mlp.fc1.weight, backbone.levels.2.blocks.10.mlp.fc1.bias, backbone.levels.2.blocks.10.mlp.fc2.weight, backbone.levels.2.blocks.10.mlp.fc2.bias, backbone.levels.2.blocks.11.gamma3, backbone.levels.2.blocks.11.gamma4, backbone.levels.2.blocks.11.pos_embed.relative_bias, backbone.levels.2.blocks.11.pos_embed.cpb_mlp.0.weight, backbone.levels.2.blocks.11.pos_embed.cpb_mlp.0.bias, backbone.levels.2.blocks.11.pos_embed.cpb_mlp.2.weight, backbone.levels.2.blocks.11.norm1.weight, backbone.levels.2.blocks.11.norm1.bias, backbone.levels.2.blocks.11.attn.qkv.weight, backbone.levels.2.blocks.11.attn.qkv.bias, backbone.levels.2.blocks.11.attn.proj.weight, backbone.levels.2.blocks.11.attn.proj.bias, backbone.levels.2.blocks.11.attn.pos_emb_funct.relative_coords_table, backbone.levels.2.blocks.11.attn.pos_emb_funct.relative_position_index, backbone.levels.2.blocks.11.attn.pos_emb_funct.relative_bias, backbone.levels.2.blocks.11.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.2.blocks.11.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.2.blocks.11.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.2.blocks.11.norm2.weight, backbone.levels.2.blocks.11.norm2.bias, backbone.levels.2.blocks.11.mlp.fc1.weight, backbone.levels.2.blocks.11.mlp.fc1.bias, backbone.levels.2.blocks.11.mlp.fc2.weight, backbone.levels.2.blocks.11.mlp.fc2.bias, backbone.levels.2.downsample.norm.weight, backbone.levels.2.downsample.norm.bias, backbone.levels.2.downsample.reduction.0.weight, backbone.levels.3.blocks.0.gamma3, backbone.levels.3.blocks.0.gamma4, backbone.levels.3.blocks.0.pos_embed.relative_bias, backbone.levels.3.blocks.0.pos_embed.cpb_mlp.0.weight, backbone.levels.3.blocks.0.pos_embed.cpb_mlp.0.bias, backbone.levels.3.blocks.0.pos_embed.cpb_mlp.2.weight, backbone.levels.3.blocks.0.norm1.weight, backbone.levels.3.blocks.0.norm1.bias, backbone.levels.3.blocks.0.attn.qkv.weight, backbone.levels.3.blocks.0.attn.qkv.bias, backbone.levels.3.blocks.0.attn.proj.weight, backbone.levels.3.blocks.0.attn.proj.bias, backbone.levels.3.blocks.0.attn.pos_emb_funct.relative_coords_table, backbone.levels.3.blocks.0.attn.pos_emb_funct.relative_position_index, backbone.levels.3.blocks.0.attn.pos_emb_funct.relative_bias, backbone.levels.3.blocks.0.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.3.blocks.0.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.3.blocks.0.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.3.blocks.0.norm2.weight, backbone.levels.3.blocks.0.norm2.bias, backbone.levels.3.blocks.0.mlp.fc1.weight, backbone.levels.3.blocks.0.mlp.fc1.bias, backbone.levels.3.blocks.0.mlp.fc2.weight, backbone.levels.3.blocks.0.mlp.fc2.bias, backbone.levels.3.blocks.1.gamma3, backbone.levels.3.blocks.1.gamma4, backbone.levels.3.blocks.1.pos_embed.relative_bias, backbone.levels.3.blocks.1.pos_embed.cpb_mlp.0.weight, backbone.levels.3.blocks.1.pos_embed.cpb_mlp.0.bias, backbone.levels.3.blocks.1.pos_embed.cpb_mlp.2.weight, backbone.levels.3.blocks.1.norm1.weight, backbone.levels.3.blocks.1.norm1.bias, backbone.levels.3.blocks.1.attn.qkv.weight, backbone.levels.3.blocks.1.attn.qkv.bias, backbone.levels.3.blocks.1.attn.proj.weight, backbone.levels.3.blocks.1.attn.proj.bias, backbone.levels.3.blocks.1.attn.pos_emb_funct.relative_coords_table, backbone.levels.3.blocks.1.attn.pos_emb_funct.relative_position_index, backbone.levels.3.blocks.1.attn.pos_emb_funct.relative_bias, backbone.levels.3.blocks.1.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.3.blocks.1.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.3.blocks.1.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.3.blocks.1.norm2.weight, backbone.levels.3.blocks.1.norm2.bias, backbone.levels.3.blocks.1.mlp.fc1.weight, backbone.levels.3.blocks.1.mlp.fc1.bias, backbone.levels.3.blocks.1.mlp.fc2.weight, backbone.levels.3.blocks.1.mlp.fc2.bias, backbone.levels.3.blocks.2.gamma3, backbone.levels.3.blocks.2.gamma4, backbone.levels.3.blocks.2.pos_embed.relative_bias, backbone.levels.3.blocks.2.pos_embed.cpb_mlp.0.weight, backbone.levels.3.blocks.2.pos_embed.cpb_mlp.0.bias, backbone.levels.3.blocks.2.pos_embed.cpb_mlp.2.weight, backbone.levels.3.blocks.2.norm1.weight, backbone.levels.3.blocks.2.norm1.bias, backbone.levels.3.blocks.2.attn.qkv.weight, backbone.levels.3.blocks.2.attn.qkv.bias, backbone.levels.3.blocks.2.attn.proj.weight, backbone.levels.3.blocks.2.attn.proj.bias, backbone.levels.3.blocks.2.attn.pos_emb_funct.relative_coords_table, backbone.levels.3.blocks.2.attn.pos_emb_funct.relative_position_index, backbone.levels.3.blocks.2.attn.pos_emb_funct.relative_bias, backbone.levels.3.blocks.2.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.3.blocks.2.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.3.blocks.2.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.3.blocks.2.norm2.weight, backbone.levels.3.blocks.2.norm2.bias, backbone.levels.3.blocks.2.mlp.fc1.weight, backbone.levels.3.blocks.2.mlp.fc1.bias, backbone.levels.3.blocks.2.mlp.fc2.weight, backbone.levels.3.blocks.2.mlp.fc2.bias, backbone.levels.3.blocks.3.gamma3, backbone.levels.3.blocks.3.gamma4, backbone.levels.3.blocks.3.pos_embed.relative_bias, backbone.levels.3.blocks.3.pos_embed.cpb_mlp.0.weight, backbone.levels.3.blocks.3.pos_embed.cpb_mlp.0.bias, backbone.levels.3.blocks.3.pos_embed.cpb_mlp.2.weight, backbone.levels.3.blocks.3.norm1.weight, backbone.levels.3.blocks.3.norm1.bias, backbone.levels.3.blocks.3.attn.qkv.weight, backbone.levels.3.blocks.3.attn.qkv.bias, backbone.levels.3.blocks.3.attn.proj.weight, backbone.levels.3.blocks.3.attn.proj.bias, backbone.levels.3.blocks.3.attn.pos_emb_funct.relative_coords_table, backbone.levels.3.blocks.3.attn.pos_emb_funct.relative_position_index, backbone.levels.3.blocks.3.attn.pos_emb_funct.relative_bias, backbone.levels.3.blocks.3.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.3.blocks.3.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.3.blocks.3.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.3.blocks.3.norm2.weight, backbone.levels.3.blocks.3.norm2.bias, backbone.levels.3.blocks.3.mlp.fc1.weight, backbone.levels.3.blocks.3.mlp.fc1.bias, backbone.levels.3.blocks.3.mlp.fc2.weight, backbone.levels.3.blocks.3.mlp.fc2.bias, backbone.levels.3.blocks.4.gamma3, backbone.levels.3.blocks.4.gamma4, backbone.levels.3.blocks.4.pos_embed.relative_bias, backbone.levels.3.blocks.4.pos_embed.cpb_mlp.0.weight, backbone.levels.3.blocks.4.pos_embed.cpb_mlp.0.bias, backbone.levels.3.blocks.4.pos_embed.cpb_mlp.2.weight, backbone.levels.3.blocks.4.norm1.weight, backbone.levels.3.blocks.4.norm1.bias, backbone.levels.3.blocks.4.attn.qkv.weight, backbone.levels.3.blocks.4.attn.qkv.bias, backbone.levels.3.blocks.4.attn.proj.weight, backbone.levels.3.blocks.4.attn.proj.bias, backbone.levels.3.blocks.4.attn.pos_emb_funct.relative_coords_table, backbone.levels.3.blocks.4.attn.pos_emb_funct.relative_position_index, backbone.levels.3.blocks.4.attn.pos_emb_funct.relative_bias, backbone.levels.3.blocks.4.attn.pos_emb_funct.cpb_mlp.0.weight, backbone.levels.3.blocks.4.attn.pos_emb_funct.cpb_mlp.0.bias, backbone.levels.3.blocks.4.attn.pos_emb_funct.cpb_mlp.2.weight, backbone.levels.3.blocks.4.norm2.weight, backbone.levels.3.blocks.4.norm2.bias, backbone.levels.3.blocks.4.mlp.fc1.weight, backbone.levels.3.blocks.4.mlp.fc1.bias, backbone.levels.3.blocks.4.mlp.fc2.weight, backbone.levels.3.blocks.4.mlp.fc2.bias, backbone.norm.weight, backbone.norm.bias, backbone.norm.running_mean, backbone.norm.running_var, backbone.norm.num_batches_tracked, head.fc.weight, head.fc.bias

missing keys in source state_dict: patch_embed.conv_down.0.weight, patch_embed.conv_down.1.weight, patch_embed.conv_down.1.bias, patch_embed.conv_down.1.running_mean, patch_embed.conv_down.1.running_var, patch_embed.conv_down.3.weight, patch_embed.conv_down.4.weight, patch_embed.conv_down.4.bias, patch_embed.conv_down.4.running_mean, patch_embed.conv_down.4.running_var, levels.0.blocks.0.conv1.weight, levels.0.blocks.0.conv1.bias, levels.0.blocks.0.norm1.weight, levels.0.blocks.0.norm1.bias, levels.0.blocks.0.norm1.running_mean, levels.0.blocks.0.norm1.running_var, levels.0.blocks.0.conv2.weight, levels.0.blocks.0.conv2.bias, levels.0.blocks.0.norm2.weight, levels.0.blocks.0.norm2.bias, levels.0.blocks.0.norm2.running_mean, levels.0.blocks.0.norm2.running_var, levels.0.blocks.1.conv1.weight, levels.0.blocks.1.conv1.bias, levels.0.blocks.1.norm1.weight, levels.0.blocks.1.norm1.bias, levels.0.blocks.1.norm1.running_mean, levels.0.blocks.1.norm1.running_var, levels.0.blocks.1.conv2.weight, levels.0.blocks.1.conv2.bias, levels.0.blocks.1.norm2.weight, levels.0.blocks.1.norm2.bias, levels.0.blocks.1.norm2.running_mean, levels.0.blocks.1.norm2.running_var, levels.0.blocks.2.conv1.weight, levels.0.blocks.2.conv1.bias, levels.0.blocks.2.norm1.weight, levels.0.blocks.2.norm1.bias, levels.0.blocks.2.norm1.running_mean, levels.0.blocks.2.norm1.running_var, levels.0.blocks.2.conv2.weight, levels.0.blocks.2.conv2.bias, levels.0.blocks.2.norm2.weight, levels.0.blocks.2.norm2.bias, levels.0.blocks.2.norm2.running_mean, levels.0.blocks.2.norm2.running_var, levels.0.downsample.norm.weight, levels.0.downsample.norm.bias, levels.0.downsample.reduction.0.weight, levels.1.blocks.0.conv1.weight, levels.1.blocks.0.conv1.bias, levels.1.blocks.0.norm1.weight, levels.1.blocks.0.norm1.bias, levels.1.blocks.0.norm1.running_mean, levels.1.blocks.0.norm1.running_var, levels.1.blocks.0.conv2.weight, levels.1.blocks.0.conv2.bias, levels.1.blocks.0.norm2.weight, levels.1.blocks.0.norm2.bias, levels.1.blocks.0.norm2.running_mean, levels.1.blocks.0.norm2.running_var, levels.1.blocks.1.conv1.weight, levels.1.blocks.1.conv1.bias, levels.1.blocks.1.norm1.weight, levels.1.blocks.1.norm1.bias, levels.1.blocks.1.norm1.running_mean, levels.1.blocks.1.norm1.running_var, levels.1.blocks.1.conv2.weight, levels.1.blocks.1.conv2.bias, levels.1.blocks.1.norm2.weight, levels.1.blocks.1.norm2.bias, levels.1.blocks.1.norm2.running_mean, levels.1.blocks.1.norm2.running_var, levels.1.blocks.2.conv1.weight, levels.1.blocks.2.conv1.bias, levels.1.blocks.2.norm1.weight, levels.1.blocks.2.norm1.bias, levels.1.blocks.2.norm1.running_mean, levels.1.blocks.2.norm1.running_var, levels.1.blocks.2.conv2.weight, levels.1.blocks.2.conv2.bias, levels.1.blocks.2.norm2.weight, levels.1.blocks.2.norm2.bias, levels.1.blocks.2.norm2.running_mean, levels.1.blocks.2.norm2.running_var, levels.1.downsample.norm.weight, levels.1.downsample.norm.bias, levels.1.downsample.reduction.0.weight, levels.2.blocks.0.gamma3, levels.2.blocks.0.gamma4, levels.2.blocks.0.pos_embed.relative_bias, levels.2.blocks.0.pos_embed.cpb_mlp.0.weight, levels.2.blocks.0.pos_embed.cpb_mlp.0.bias, levels.2.blocks.0.pos_embed.cpb_mlp.2.weight, levels.2.blocks.0.norm1.weight, levels.2.blocks.0.norm1.bias, levels.2.blocks.0.attn.qkv.weight, levels.2.blocks.0.attn.qkv.bias, levels.2.blocks.0.attn.proj.weight, levels.2.blocks.0.attn.proj.bias, levels.2.blocks.0.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.0.attn.pos_emb_funct.relative_position_index, levels.2.blocks.0.attn.pos_emb_funct.relative_bias, levels.2.blocks.0.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.0.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.0.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.0.norm2.weight, levels.2.blocks.0.norm2.bias, levels.2.blocks.0.mlp.fc1.weight, levels.2.blocks.0.mlp.fc1.bias, levels.2.blocks.0.mlp.fc2.weight, levels.2.blocks.0.mlp.fc2.bias, levels.2.blocks.1.gamma3, levels.2.blocks.1.gamma4, levels.2.blocks.1.pos_embed.relative_bias, levels.2.blocks.1.pos_embed.cpb_mlp.0.weight, levels.2.blocks.1.pos_embed.cpb_mlp.0.bias, levels.2.blocks.1.pos_embed.cpb_mlp.2.weight, levels.2.blocks.1.norm1.weight, levels.2.blocks.1.norm1.bias, levels.2.blocks.1.attn.qkv.weight, levels.2.blocks.1.attn.qkv.bias, levels.2.blocks.1.attn.proj.weight, levels.2.blocks.1.attn.proj.bias, levels.2.blocks.1.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.1.attn.pos_emb_funct.relative_position_index, levels.2.blocks.1.attn.pos_emb_funct.relative_bias, levels.2.blocks.1.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.1.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.1.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.1.norm2.weight, levels.2.blocks.1.norm2.bias, levels.2.blocks.1.mlp.fc1.weight, levels.2.blocks.1.mlp.fc1.bias, levels.2.blocks.1.mlp.fc2.weight, levels.2.blocks.1.mlp.fc2.bias, levels.2.blocks.2.gamma3, levels.2.blocks.2.gamma4, levels.2.blocks.2.pos_embed.relative_bias, levels.2.blocks.2.pos_embed.cpb_mlp.0.weight, levels.2.blocks.2.pos_embed.cpb_mlp.0.bias, levels.2.blocks.2.pos_embed.cpb_mlp.2.weight, levels.2.blocks.2.norm1.weight, levels.2.blocks.2.norm1.bias, levels.2.blocks.2.attn.qkv.weight, levels.2.blocks.2.attn.qkv.bias, levels.2.blocks.2.attn.proj.weight, levels.2.blocks.2.attn.proj.bias, levels.2.blocks.2.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.2.attn.pos_emb_funct.relative_position_index, levels.2.blocks.2.attn.pos_emb_funct.relative_bias, levels.2.blocks.2.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.2.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.2.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.2.norm2.weight, levels.2.blocks.2.norm2.bias, levels.2.blocks.2.mlp.fc1.weight, levels.2.blocks.2.mlp.fc1.bias, levels.2.blocks.2.mlp.fc2.weight, levels.2.blocks.2.mlp.fc2.bias, levels.2.blocks.3.gamma3, levels.2.blocks.3.gamma4, levels.2.blocks.3.pos_embed.relative_bias, levels.2.blocks.3.pos_embed.cpb_mlp.0.weight, levels.2.blocks.3.pos_embed.cpb_mlp.0.bias, levels.2.blocks.3.pos_embed.cpb_mlp.2.weight, levels.2.blocks.3.norm1.weight, levels.2.blocks.3.norm1.bias, levels.2.blocks.3.attn.qkv.weight, levels.2.blocks.3.attn.qkv.bias, levels.2.blocks.3.attn.proj.weight, levels.2.blocks.3.attn.proj.bias, levels.2.blocks.3.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.3.attn.pos_emb_funct.relative_position_index, levels.2.blocks.3.attn.pos_emb_funct.relative_bias, levels.2.blocks.3.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.3.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.3.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.3.norm2.weight, levels.2.blocks.3.norm2.bias, levels.2.blocks.3.mlp.fc1.weight, levels.2.blocks.3.mlp.fc1.bias, levels.2.blocks.3.mlp.fc2.weight, levels.2.blocks.3.mlp.fc2.bias, levels.2.blocks.4.gamma3, levels.2.blocks.4.gamma4, levels.2.blocks.4.pos_embed.relative_bias, levels.2.blocks.4.pos_embed.cpb_mlp.0.weight, levels.2.blocks.4.pos_embed.cpb_mlp.0.bias, levels.2.blocks.4.pos_embed.cpb_mlp.2.weight, levels.2.blocks.4.norm1.weight, levels.2.blocks.4.norm1.bias, levels.2.blocks.4.attn.qkv.weight, levels.2.blocks.4.attn.qkv.bias, levels.2.blocks.4.attn.proj.weight, levels.2.blocks.4.attn.proj.bias, levels.2.blocks.4.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.4.attn.pos_emb_funct.relative_position_index, levels.2.blocks.4.attn.pos_emb_funct.relative_bias, levels.2.blocks.4.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.4.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.4.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.4.norm2.weight, levels.2.blocks.4.norm2.bias, levels.2.blocks.4.mlp.fc1.weight, levels.2.blocks.4.mlp.fc1.bias, levels.2.blocks.4.mlp.fc2.weight, levels.2.blocks.4.mlp.fc2.bias, levels.2.blocks.5.gamma3, levels.2.blocks.5.gamma4, levels.2.blocks.5.pos_embed.relative_bias, levels.2.blocks.5.pos_embed.cpb_mlp.0.weight, levels.2.blocks.5.pos_embed.cpb_mlp.0.bias, levels.2.blocks.5.pos_embed.cpb_mlp.2.weight, levels.2.blocks.5.norm1.weight, levels.2.blocks.5.norm1.bias, levels.2.blocks.5.attn.qkv.weight, levels.2.blocks.5.attn.qkv.bias, levels.2.blocks.5.attn.proj.weight, levels.2.blocks.5.attn.proj.bias, levels.2.blocks.5.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.5.attn.pos_emb_funct.relative_position_index, levels.2.blocks.5.attn.pos_emb_funct.relative_bias, levels.2.blocks.5.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.5.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.5.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.5.norm2.weight, levels.2.blocks.5.norm2.bias, levels.2.blocks.5.mlp.fc1.weight, levels.2.blocks.5.mlp.fc1.bias, levels.2.blocks.5.mlp.fc2.weight, levels.2.blocks.5.mlp.fc2.bias, levels.2.blocks.6.gamma3, levels.2.blocks.6.gamma4, levels.2.blocks.6.pos_embed.relative_bias, levels.2.blocks.6.pos_embed.cpb_mlp.0.weight, levels.2.blocks.6.pos_embed.cpb_mlp.0.bias, levels.2.blocks.6.pos_embed.cpb_mlp.2.weight, levels.2.blocks.6.norm1.weight, levels.2.blocks.6.norm1.bias, levels.2.blocks.6.attn.qkv.weight, levels.2.blocks.6.attn.qkv.bias, levels.2.blocks.6.attn.proj.weight, levels.2.blocks.6.attn.proj.bias, levels.2.blocks.6.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.6.attn.pos_emb_funct.relative_position_index, levels.2.blocks.6.attn.pos_emb_funct.relative_bias, levels.2.blocks.6.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.6.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.6.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.6.norm2.weight, levels.2.blocks.6.norm2.bias, levels.2.blocks.6.mlp.fc1.weight, levels.2.blocks.6.mlp.fc1.bias, levels.2.blocks.6.mlp.fc2.weight, levels.2.blocks.6.mlp.fc2.bias, levels.2.blocks.7.gamma3, levels.2.blocks.7.gamma4, levels.2.blocks.7.pos_embed.relative_bias, levels.2.blocks.7.pos_embed.cpb_mlp.0.weight, levels.2.blocks.7.pos_embed.cpb_mlp.0.bias, levels.2.blocks.7.pos_embed.cpb_mlp.2.weight, levels.2.blocks.7.norm1.weight, levels.2.blocks.7.norm1.bias, levels.2.blocks.7.attn.qkv.weight, levels.2.blocks.7.attn.qkv.bias, levels.2.blocks.7.attn.proj.weight, levels.2.blocks.7.attn.proj.bias, levels.2.blocks.7.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.7.attn.pos_emb_funct.relative_position_index, levels.2.blocks.7.attn.pos_emb_funct.relative_bias, levels.2.blocks.7.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.7.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.7.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.7.norm2.weight, levels.2.blocks.7.norm2.bias, levels.2.blocks.7.mlp.fc1.weight, levels.2.blocks.7.mlp.fc1.bias, levels.2.blocks.7.mlp.fc2.weight, levels.2.blocks.7.mlp.fc2.bias, levels.2.blocks.8.gamma3, levels.2.blocks.8.gamma4, levels.2.blocks.8.pos_embed.relative_bias, levels.2.blocks.8.pos_embed.cpb_mlp.0.weight, levels.2.blocks.8.pos_embed.cpb_mlp.0.bias, levels.2.blocks.8.pos_embed.cpb_mlp.2.weight, levels.2.blocks.8.norm1.weight, levels.2.blocks.8.norm1.bias, levels.2.blocks.8.attn.qkv.weight, levels.2.blocks.8.attn.qkv.bias, levels.2.blocks.8.attn.proj.weight, levels.2.blocks.8.attn.proj.bias, levels.2.blocks.8.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.8.attn.pos_emb_funct.relative_position_index, levels.2.blocks.8.attn.pos_emb_funct.relative_bias, levels.2.blocks.8.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.8.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.8.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.8.norm2.weight, levels.2.blocks.8.norm2.bias, levels.2.blocks.8.mlp.fc1.weight, levels.2.blocks.8.mlp.fc1.bias, levels.2.blocks.8.mlp.fc2.weight, levels.2.blocks.8.mlp.fc2.bias, levels.2.blocks.9.gamma3, levels.2.blocks.9.gamma4, levels.2.blocks.9.pos_embed.relative_bias, levels.2.blocks.9.pos_embed.cpb_mlp.0.weight, levels.2.blocks.9.pos_embed.cpb_mlp.0.bias, levels.2.blocks.9.pos_embed.cpb_mlp.2.weight, levels.2.blocks.9.norm1.weight, levels.2.blocks.9.norm1.bias, levels.2.blocks.9.attn.qkv.weight, levels.2.blocks.9.attn.qkv.bias, levels.2.blocks.9.attn.proj.weight, levels.2.blocks.9.attn.proj.bias, levels.2.blocks.9.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.9.attn.pos_emb_funct.relative_position_index, levels.2.blocks.9.attn.pos_emb_funct.relative_bias, levels.2.blocks.9.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.9.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.9.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.9.norm2.weight, levels.2.blocks.9.norm2.bias, levels.2.blocks.9.mlp.fc1.weight, levels.2.blocks.9.mlp.fc1.bias, levels.2.blocks.9.mlp.fc2.weight, levels.2.blocks.9.mlp.fc2.bias, levels.2.blocks.10.gamma3, levels.2.blocks.10.gamma4, levels.2.blocks.10.pos_embed.relative_bias, levels.2.blocks.10.pos_embed.cpb_mlp.0.weight, levels.2.blocks.10.pos_embed.cpb_mlp.0.bias, levels.2.blocks.10.pos_embed.cpb_mlp.2.weight, levels.2.blocks.10.norm1.weight, levels.2.blocks.10.norm1.bias, levels.2.blocks.10.attn.qkv.weight, levels.2.blocks.10.attn.qkv.bias, levels.2.blocks.10.attn.proj.weight, levels.2.blocks.10.attn.proj.bias, levels.2.blocks.10.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.10.attn.pos_emb_funct.relative_position_index, levels.2.blocks.10.attn.pos_emb_funct.relative_bias, levels.2.blocks.10.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.10.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.10.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.10.norm2.weight, levels.2.blocks.10.norm2.bias, levels.2.blocks.10.mlp.fc1.weight, levels.2.blocks.10.mlp.fc1.bias, levels.2.blocks.10.mlp.fc2.weight, levels.2.blocks.10.mlp.fc2.bias, levels.2.blocks.11.gamma3, levels.2.blocks.11.gamma4, levels.2.blocks.11.pos_embed.relative_bias, levels.2.blocks.11.pos_embed.cpb_mlp.0.weight, levels.2.blocks.11.pos_embed.cpb_mlp.0.bias, levels.2.blocks.11.pos_embed.cpb_mlp.2.weight, levels.2.blocks.11.norm1.weight, levels.2.blocks.11.norm1.bias, levels.2.blocks.11.attn.qkv.weight, levels.2.blocks.11.attn.qkv.bias, levels.2.blocks.11.attn.proj.weight, levels.2.blocks.11.attn.proj.bias, levels.2.blocks.11.attn.pos_emb_funct.relative_coords_table, levels.2.blocks.11.attn.pos_emb_funct.relative_position_index, levels.2.blocks.11.attn.pos_emb_funct.relative_bias, levels.2.blocks.11.attn.pos_emb_funct.cpb_mlp.0.weight, levels.2.blocks.11.attn.pos_emb_funct.cpb_mlp.0.bias, levels.2.blocks.11.attn.pos_emb_funct.cpb_mlp.2.weight, levels.2.blocks.11.norm2.weight, levels.2.blocks.11.norm2.bias, levels.2.blocks.11.mlp.fc1.weight, levels.2.blocks.11.mlp.fc1.bias, levels.2.blocks.11.mlp.fc2.weight, levels.2.blocks.11.mlp.fc2.bias, levels.2.downsample.norm.weight, levels.2.downsample.norm.bias, levels.2.downsample.reduction.0.weight, levels.3.blocks.0.gamma3, levels.3.blocks.0.gamma4, levels.3.blocks.0.pos_embed.relative_bias, levels.3.blocks.0.pos_embed.cpb_mlp.0.weight, levels.3.blocks.0.pos_embed.cpb_mlp.0.bias, levels.3.blocks.0.pos_embed.cpb_mlp.2.weight, levels.3.blocks.0.norm1.weight, levels.3.blocks.0.norm1.bias, levels.3.blocks.0.attn.qkv.weight, levels.3.blocks.0.attn.qkv.bias, levels.3.blocks.0.attn.proj.weight, levels.3.blocks.0.attn.proj.bias, levels.3.blocks.0.attn.pos_emb_funct.relative_coords_table, levels.3.blocks.0.attn.pos_emb_funct.relative_position_index, levels.3.blocks.0.attn.pos_emb_funct.relative_bias, levels.3.blocks.0.attn.pos_emb_funct.cpb_mlp.0.weight, levels.3.blocks.0.attn.pos_emb_funct.cpb_mlp.0.bias, levels.3.blocks.0.attn.pos_emb_funct.cpb_mlp.2.weight, levels.3.blocks.0.norm2.weight, levels.3.blocks.0.norm2.bias, levels.3.blocks.0.mlp.fc1.weight, levels.3.blocks.0.mlp.fc1.bias, levels.3.blocks.0.mlp.fc2.weight, levels.3.blocks.0.mlp.fc2.bias, levels.3.blocks.1.gamma3, levels.3.blocks.1.gamma4, levels.3.blocks.1.pos_embed.relative_bias, levels.3.blocks.1.pos_embed.cpb_mlp.0.weight, levels.3.blocks.1.pos_embed.cpb_mlp.0.bias, levels.3.blocks.1.pos_embed.cpb_mlp.2.weight, levels.3.blocks.1.norm1.weight, levels.3.blocks.1.norm1.bias, levels.3.blocks.1.attn.qkv.weight, levels.3.blocks.1.attn.qkv.bias, levels.3.blocks.1.attn.proj.weight, levels.3.blocks.1.attn.proj.bias, levels.3.blocks.1.attn.pos_emb_funct.relative_coords_table, levels.3.blocks.1.attn.pos_emb_funct.relative_position_index, levels.3.blocks.1.attn.pos_emb_funct.relative_bias, levels.3.blocks.1.attn.pos_emb_funct.cpb_mlp.0.weight, levels.3.blocks.1.attn.pos_emb_funct.cpb_mlp.0.bias, levels.3.blocks.1.attn.pos_emb_funct.cpb_mlp.2.weight, levels.3.blocks.1.norm2.weight, levels.3.blocks.1.norm2.bias, levels.3.blocks.1.mlp.fc1.weight, levels.3.blocks.1.mlp.fc1.bias, levels.3.blocks.1.mlp.fc2.weight, levels.3.blocks.1.mlp.fc2.bias, levels.3.blocks.2.gamma3, levels.3.blocks.2.gamma4, levels.3.blocks.2.pos_embed.relative_bias, levels.3.blocks.2.pos_embed.cpb_mlp.0.weight, levels.3.blocks.2.pos_embed.cpb_mlp.0.bias, levels.3.blocks.2.pos_embed.cpb_mlp.2.weight, levels.3.blocks.2.norm1.weight, levels.3.blocks.2.norm1.bias, levels.3.blocks.2.attn.qkv.weight, levels.3.blocks.2.attn.qkv.bias, levels.3.blocks.2.attn.proj.weight, levels.3.blocks.2.attn.proj.bias, levels.3.blocks.2.attn.pos_emb_funct.relative_coords_table, levels.3.blocks.2.attn.pos_emb_funct.relative_position_index, levels.3.blocks.2.attn.pos_emb_funct.relative_bias, levels.3.blocks.2.attn.pos_emb_funct.cpb_mlp.0.weight, levels.3.blocks.2.attn.pos_emb_funct.cpb_mlp.0.bias, levels.3.blocks.2.attn.pos_emb_funct.cpb_mlp.2.weight, levels.3.blocks.2.norm2.weight, levels.3.blocks.2.norm2.bias, levels.3.blocks.2.mlp.fc1.weight, levels.3.blocks.2.mlp.fc1.bias, levels.3.blocks.2.mlp.fc2.weight, levels.3.blocks.2.mlp.fc2.bias, levels.3.blocks.3.gamma3, levels.3.blocks.3.gamma4, levels.3.blocks.3.pos_embed.relative_bias, levels.3.blocks.3.pos_embed.cpb_mlp.0.weight, levels.3.blocks.3.pos_embed.cpb_mlp.0.bias, levels.3.blocks.3.pos_embed.cpb_mlp.2.weight, levels.3.blocks.3.norm1.weight, levels.3.blocks.3.norm1.bias, levels.3.blocks.3.attn.qkv.weight, levels.3.blocks.3.attn.qkv.bias, levels.3.blocks.3.attn.proj.weight, levels.3.blocks.3.attn.proj.bias, levels.3.blocks.3.attn.pos_emb_funct.relative_coords_table, levels.3.blocks.3.attn.pos_emb_funct.relative_position_index, levels.3.blocks.3.attn.pos_emb_funct.relative_bias, levels.3.blocks.3.attn.pos_emb_funct.cpb_mlp.0.weight, levels.3.blocks.3.attn.pos_emb_funct.cpb_mlp.0.bias, levels.3.blocks.3.attn.pos_emb_funct.cpb_mlp.2.weight, levels.3.blocks.3.norm2.weight, levels.3.blocks.3.norm2.bias, levels.3.blocks.3.mlp.fc1.weight, levels.3.blocks.3.mlp.fc1.bias, levels.3.blocks.3.mlp.fc2.weight, levels.3.blocks.3.mlp.fc2.bias, levels.3.blocks.4.gamma3, levels.3.blocks.4.gamma4, levels.3.blocks.4.pos_embed.relative_bias, levels.3.blocks.4.pos_embed.cpb_mlp.0.weight, levels.3.blocks.4.pos_embed.cpb_mlp.0.bias, levels.3.blocks.4.pos_embed.cpb_mlp.2.weight, levels.3.blocks.4.norm1.weight, levels.3.blocks.4.norm1.bias, levels.3.blocks.4.attn.qkv.weight, levels.3.blocks.4.attn.qkv.bias, levels.3.blocks.4.attn.proj.weight, levels.3.blocks.4.attn.proj.bias, levels.3.blocks.4.attn.pos_emb_funct.relative_coords_table, levels.3.blocks.4.attn.pos_emb_funct.relative_position_index, levels.3.blocks.4.attn.pos_emb_funct.relative_bias, levels.3.blocks.4.attn.pos_emb_funct.cpb_mlp.0.weight, levels.3.blocks.4.attn.pos_emb_funct.cpb_mlp.0.bias, levels.3.blocks.4.attn.pos_emb_funct.cpb_mlp.2.weight, levels.3.blocks.4.norm2.weight, levels.3.blocks.4.norm2.bias, levels.3.blocks.4.mlp.fc1.weight, levels.3.blocks.4.mlp.fc1.bias, levels.3.blocks.4.mlp.fc2.weight, levels.3.blocks.4.mlp.fc2.bias, norm.weight, norm.bias, norm.running_mean, norm.running_var, head.weight, head.bias

03/06 17:49:59 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
03/06 17:49:59 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
03/06 17:49:59 - mmengine - INFO - Checkpoints will be saved to /results/classification_experiment/train.
Error executing job with overrides: ['results_dir=/results/classification_experiment', 'train.num_gpus=1', 'model.init_cfg.checkpoint=/workspace/tao-experiments/pretrained/fastervit_4_21k_224_w14.pth']Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/nvidia_tao_pytorch/core/decorators/workflow.py", line 69, in _func
    raise e
  File "/usr/local/lib/python3.10/dist-packages/nvidia_tao_pytorch/core/decorators/workflow.py", line 48, in _func
    runner(cfg, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/nvidia_tao_pytorch/cv/classification/scripts/train.py", line 88, in main
    run_experiment(cfg)
  File "/usr/local/lib/python3.10/dist-packages/nvidia_tao_pytorch/cv/classification/scripts/train.py", line 74, in run_experiment
    runner.train()
  File "/usr/local/lib/python3.10/dist-packages/mmengine/runner/runner.py", line 1777, in train
    model = self.train_loop.run()  # type: ignore
  File "/usr/local/lib/python3.10/dist-packages/mmengine/runner/loops.py", line 96, in run
    self.run_epoch()
  File "/usr/local/lib/python3.10/dist-packages/mmengine/runner/loops.py", line 113, in run_epoch
    self.run_iter(idx, data_batch)
  File "/usr/local/lib/python3.10/dist-packages/mmengine/runner/loops.py", line 129, in run_iter
    outputs = self.runner.model.train_step(
  File "/usr/local/lib/python3.10/dist-packages/mmengine/model/wrappers/distributed.py", line 121, in train_step
    losses = self._run_forward(data, mode='loss')
  File "/usr/local/lib/python3.10/dist-packages/mmengine/model/wrappers/distributed.py", line 161, in _run_forward
    results = self(**data, mode=mode)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1527, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1536, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/distributed.py", line 1589, in forward
    inputs, kwargs = self._pre_forward(*inputs, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/distributed.py", line 1480, in _pre_forward
    if torch.is_grad_enabled() and self.reducer._rebuild_buckets():
RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by passing the keyword argument `find_unused_parameters=True` to `torch.nn.parallel.DistributedDataParallel`, and by 
making sure all `forward` function outputs participate in calculating loss. 
If you already have done the above, then the distributed data parallel module wasn't able to locate the output tensors in the return value of your module's `forward` function. Please include the loss function and the structure of the return value of `forward` of your module when reporting this issue (e.g. list, dict, iterable).
Parameter indices which did not receive grad for rank 0: 405 406
 In addition, you can set the environment variable TORCH_DISTRIBUTED_DEBUG to either INFO or DETAIL to print out information about which particular parameters did not receive gradient on this rank as part of this error

Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
E0306 17:50:07.071000 139710467491648 torch/distributed/elastic/multiprocessing/api.py:881] failed (exitcode: 1) local_rank: 0 (pid: 392) of binary: /usr/bin/python
Traceback (most recent call last):
  File "/usr/local/bin/torchrun", line 8, in <module>
    sys.exit(main())
  File "/usr/local/lib/python3.10/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
    return f(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/distributed/run.py", line 879, in main
    run(args)
  File "/usr/local/lib/python3.10/dist-packages/torch/distributed/run.py", line 870, in run
    elastic_launch(
  File "/usr/local/lib/python3.10/dist-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/usr/local/lib/python3.10/dist-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
/usr/local/lib/python3.10/dist-packages/nvidia_tao_pytorch/cv/classification/scripts/train.py FAILED
------------------------------------------------------------
Failures:
  <NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:  time      : 2025-03-06_17:50:07
  host      : 1acf5ca9b93d
  rank      : 0 (local_rank: 0)
  exitcode  : 1 (pid: 392)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
[2025-03-06 17:50:07,288 - TAO Toolkit - root - INFO] Sending telemetry data.
[2025-03-06 17:50:07,288 - TAO Toolkit - root - INFO] ================> Start Reporting Telemetry <================
[2025-03-06 17:50:07,288 - TAO Toolkit - root - INFO] Sending {'version': '5.5.0', 'action': 'train', 'network': 'classification_pyt', 'gpu': ['NVIDIA-GeForce-RTX-2060'], 'success': False, 'time_lapsed': 21} to https://api.tao.ngc.nvidia.com.
[2025-03-06 17:50:09,015 - TAO Toolkit - root - INFO] Telemetry sent successfully.
[2025-03-06 17:50:09,015 - TAO Toolkit - root - INFO] ================> End Reporting Telemetry <================
[2025-03-06 17:50:09,015 - TAO Toolkit - root - WARNING] Execution status: FAIL
2025-03-06 23:50:09,976 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 363: Stopping container.

I dont understand why TAO is trying to train with DDP thus gets error

RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by passing the keyword argument `find_unused_parameters=True` to `torch.nn.parallel.DistributedDataParallel`, and by 
making sure all `forward` function outputs participate in calculating loss.

But when I run the training with the parameter find_unused_parameters: True in train_config, the training runs fine. But I suspect enabling this option introduces an additional traversal of the autograd graph in each iteration, which can lead to increased computational overhead and, consequently, slower training speeds. This overhead does not inherently affect the model’s accuracy but can impact the efficiency of the training process.

What could possibly went wrong? Is my configuration okey?

1 post - 1 participant

Read full topic


Viewing all articles
Browse latest Browse all 537

Trending Articles