Please provide the following information when requesting support.
• Hardware (Other GPU)
• Network Type (visual_changenet_segmentation_tao)
I trained the change net and tested it through tao inference, everything is working correctly. Next, I exported the model to onnx according to this configuration
export:
results_dir: "${results_dir}/export"
gpu_id: 1
checkpoint: "changenet_model_segment_latest.pth"
onnx_file: "${export.results_dir}/changenet.onnx"
input_width: 480
input_height: 480
batch_size: 1
Next, I switched to triton server version 25 to place my model there. In this container, I get the engine file.
/usr/src/tensorrt/bin/trtexec --onnx=changenet.onnx --fp16 --saveEngine=changenet-fp16_b_1.engine
in the output, I notice a conclusion about the size of the layers, which I will use in the triton config.
[03/11/2025-07:25:14] [I] Input binding for input0 with dimensions 1x3x480x480 is created.
[03/11/2025-07:25:14] [I] Using random values for input input1
[03/11/2025-07:25:14] [I] Input binding for input1 with dimensions 1x3x480x480 is created.
[03/11/2025-07:25:14] [I] Output binding for output0 with dimensions 1x2x30x30 is created.
[03/11/2025-07:25:14] [I] Output binding for output1 with dimensions 1x2x30x30 is created.
[03/11/2025-07:25:14] [I] Output binding for output2 with dimensions 1x2x60x60 is created.
[03/11/2025-07:25:14] [I] Output binding for output3 with dimensions 1x2x120x120 is created.
[03/11/2025-07:25:14] [I] Output binding for output_final with dimensions 1x2x480x480 is created.
I also renamed the .engine format file to the format file.plan
The triton config looks like this
platform: "tensorrt_plan"
input [
{
name: "input0"
data_type: TYPE_FP32
format: FORMAT_NCHW
dims: [1, 3, 480, 480 ]
},
{
name: "input1"
data_type: TYPE_FP32
format: FORMAT_NCHW
dims: [1, 3, 480, 480 ]
}
]
output [
{
name: "output_final"
data_type: TYPE_FP32
dims: [1, 2, 480, 480 ]
},
{
name: "output0"
data_type: TYPE_FP32
dims: [1, 2, 30, 30 ]
},
{
name: "output1"
data_type: TYPE_FP32
dims: [1, 2, 30, 30 ]
},
{
name: "output2"
data_type: TYPE_FP32
dims: [1, 2, 60, 60]
},
{
name: "output3"
data_type: TYPE_FP32
dims: [1, 2, 120, 120 ]
}
]
dynamic_batching { }
I get an error at startup
"failed to load 'visual_changenet_segmentation_tao' version 1: Invalid argument: model input NHWC/NCHW require 3 dims for visual_changenet_segmentation_tao"
"failed to load 'visual_changenet_segmentation_tao'"
3 posts - 2 participants